| REPORT DOCUMENTATION PAGE | | | | | Form Approved OMB No. 0704-0188 | |--|---------------------------------------|---------------------------------|--|---------------------------------------|--| | Public reporting burden to
maintaining the data nee | for this collection of information | is estimated to average 1 hour | per response, including the time fo | r reviewing instructions, s | earching existing data sources, gathering and | | including suggestions for
Highway, Suite 1204, Ar | r reducing this burden to Depart | ment of Defense, Washington I | Headquarters Services, Directorate | for Information Operation | ther aspect of this collection of information,
as and Reports (0704-0188), 1215 Jefferson Davis | | 1. REPORT DATE | if it does not display a currently | valid OMB control number. PL | EASE DO NOT RETURN YOUR F | of law, no person shall b | ns and Reports (0704-0188), 1215 Jefferson Davis
e subject to any penalty for failing to comply with a
DDRESS. | | I. NEPONI DATE | : (DD-MM-YYYY) | 2. REPORT TYPE Technical Papers | | | 3. DATES COVERED (From - To) | | 4. TITLE AND SU | BTITLE | 1 Technical Papers | | | CONTRACTOR | | | | | | ' | a. CONTRACT NUMBER | | | | | | . [| b. GRANT NUMBER | | | | | | <u></u> | <u> </u> | | | | | | | c. PROGRAM ELEMENT NUMBER | | 6. AUTHOR(S) | · · · · · · · · · · · · · · · · · · · | | | | : | | | | | | * | d. PROJECT NUMBER | | | | | | - | 2303
e. TASK NUMBER | | | | | | 1 | m 208 | | | | | | 15 | f. WORK UNIT NUMBER | | 7 DEDECORNING | ODO ANIZATION MALE | | | | i . | | 7. PERFORMING | ORGANIZATION NAME | (S) AND ADDRESS(E | S) · | | . PERFORMING ORGANIZATION | | Air Force Resear | rch Laboratory (AFM | (C) | | . F | REPORT | | AFRL/PRS | (, 22 1/2 | | | | • | | 5 Pollux Drive | | | | | 4 , , , , , , , , , , , , | | Edwards AFB C | A 93524-7048 | | | | | | | | | | | | | 9. SPONSORING / | MONITORING AGENC | Y NAME(S) AND ADD | RESS(ES) | 1 | 0. SPONSOR/MONITOR'S | | | | | | | CRONYM(S) | | Air Force Resear | ch Laboratory (AFM | C) | | | : | | AFRL/PRS | , (| -, | | . | 1. SPONSOR/MONITOR'S | | 5 Pollux Drive | | | | [' | NUMBER(S) | | Edwards AFB CA | A 93524-7048 | | | | | | 12. DISTRIBUTION | / AVAILABILITY STAT | EMENT | | <u></u> _ <u>_</u> <u>_</u> <u></u> | | | | | | | | | | Approved for pub | olic release; distributi | 1:t1 | • | | | | ripproved for put | · · · · · · · · · · · · · · · · · · · | on unlimited. | | | | | 13. SUPPLEMENTA | ARY NOTES | | | | · | | | | | | • | | | 14 40070407 | | | <u> </u> | | | | 14. ABSTRACT | | | | | | | • | : | | | | | | | | | | • | | • | | · | 5. SUBJECT TERM | IS | | | · · · · · · · · · · · · · · · · · · · | | | , | | | | | | | 6. SECURITY CLAS | SSIFICATION OF | | T 40 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | Jacomin CLA | CO. IOA HON OF: | | 17. LIMITATION
OF ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF RESPONSIBLE | | · | | | J. ADJIIAOI | OF FAGES | PERSON Leilani Richardson | | REPORT | b. ABSTRACT | c. THIS PAGE | | | 19b. TELEPHONE NUMBER | | Inclassified | Unclassified | Unclassified | (A) | 1 | (include area code) | | | _ CHCIGGSHIEU | Unclassified | | 1 | (661) 275-5015 | 62 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 MEMORANDUM FOR PRS (In-House/Contractor Publication) FROM: PROI (TI) (STINFO) 11 October 2000 SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2000-192 Hoge, B. (USC); Christe, K.O. (ERC), "A New Synthesis of Fluorine Nitrate" # **Journal of Fluorine Chemistry** (Statement A) | 1. This request has been reviewed by the Forb.) military/national critical technology, c.) ed.) appropriateness for release to a foreign n Comments: | export controls or distribution restrictions, ation, and e.) technical sensitivity and/or e | | |---|--|---| | | WARREST CONTRACTOR OF THE CONT | | | | | | | Signature | Date | | | 2. This request has been reviewed by the Pul and/or b) possible higher headquarters revie Comments: | w | - | | Signatura | Data | | | Signature | Date | | | 3. This request has been reviewed by the ST b.) appropriateness of distribution statement e.) parallel review completed if required, and Comments: | , c.) military/national critical technology, od f.) format and completion of meeting cle | I.) economic sensitivity, arance form if required | | | | | | Signature | Date | 116.03 | | 4. This request has been reviewed by PRS for appropriateness of distribution statement, d. national critical technology, and f.) data right Comments: |) technical sensitivity and economic sensit
ats and patentability | ivity, e.) military/ | | | | | | | APPROVED/APPROVED AS A | AMENDED/DISAPPROVEI | | | PHILIP A. KESSEL | Date | | | Technical Advisor Propulsion Science and Adva | | | Cleared (PA) | | | | Logged (PA) | | | | Notified (PA) | | | | Copied & Distributed (STINFO) | <u></u> | | | This original is for PA files | | | # A new synthesis of fluorine nitrate[†] B. Hoge^{a1}, K. O. Christe^{a,b,*} a Loker Hydrocarbon Research Institute, University of Southern California, University Park, Los Angeles, California 90089-1661, USA, and ^bAir Force Research Laboratory, Edwards Air Force Base, California 93524, USA #### Abstract The reaction of NF₄⁺SbF₆⁻ with alkali metal nitrates in either CH₃CN or SO₂ solution at low temperatures, produces FONO2 in quantitative yield. Attempts were unsuccessful to prepare FONO from NF₄SbF₆ and KNO₂ in an analogous manner. Keywords: Fluorine nitrate; fluorine nitrite; tetrafluoroammonium nitrate; synthesis. #### 1. Introduction Covalent hypofluorites can generally be prepared by the direct fluorination of the corresponding oxo- or oxofluoro- salts or the acids with elemental fluorine [1]: $$MOXO_mF_n$$ + F_2 \longrightarrow MF + $FOXO_mF_n$ ($M = H$ or alkali metal fluoride) An alternate method that avoids the need for handling elemental fluorine involves the metathetical synthesis of the corresponding NF₄⁺ salts and their subsequent thermal decomposition to NF₃ and the desired hypofluorites [2,3]: $$NF_4^+SbF_6^- + M^+XO_mF_n^- \xrightarrow{HF} [NF_4^+XO_mF_n^-] + MSbF_{6\downarrow}$$ $$[NF_4^+XO_mF_n^-] \longrightarrow NF_3 + FOXO_{(m-1)}F_n$$ 0021122 01 $FOXO_{(m-1)}F_n$ This method has been successfully demonstrated for the syntheses of FOClO₃ [2] and FOSO₂F [3]. Application of this method to FONO₂ had failed [2] because NO₃ reacts with HF according to: $$NO_3^- + 2HF$$ $NO_2^+ + H_2O + 2F^-$ In this paper it is shown that by the choice of a suitable solvent this problem can be overcome, and that the reaction of NF₄⁺ with NO₃⁻ represents an excellent method for preparing FONO₂. ## 2. Experimental Caution! Fluorine nitrate is shock sensitive, and the combinations of strong oxidizers, such as NF₄NO₃, with organic materials, such as CH₃CN, can be explosive. # 2.1 Materials and apparatus All reactions were carried out in ¾ inch o. d. Teflon-FEP ampoules that contained Teflon-A coated magnetic stirring bars and were closed by stainless steel valves. Volatile materials were handled on a stainless steel / Teflon-FEP vacuum line [4]. Nonvolatile solids were handled in the dry nitrogen atmosphere of a glove box. The CH₃CN was dried over P₂O₅ and distilled prior to its use on a grease-free Pyrex glass vacuum line. The preparation of NF₄SbF₆ has previously been described [5]. The CsNO₃ was prepared from aqueous Cs₂CO₃ and HNO₃ by using a pH electrode for end point detection. It was purified by recrystallization from H₂O and dried in an oven at 100 °C for 24 h. # 2.2 Synthesis of FONO₂ In the dry box, equimolar amounts (1.00 mmol each) of NF₄SbF₆ and CsNO₃ were placed into a prepassivated (with ClF₃) Teflon ampoule. This ampoule was then connected to the Pyrex glass line, and dry CH₃CN (3 mL liquid) was condensed in at -196 °C. It was then connected to the steel vacuum line, and the reaction mixture was warmed to -40 °C. Upon melting of the solvent, strong gas evolution was observed. The turbid solution was stirred for 15 min, and the volatile products were separated by fractional condensation in a dynamic vacuum through three cold traps, kept at -126 (methylcyclohexane slush bath), -183 (liquid oxygen), and -210 °C (nitrogen slush), respectively. The -126 °C trap contained the CH₃CN solvent, the -183 °C trap had 1.0 mmol of pure FONO₂ that was identified by its vibrational [6,7] and ¹⁹F nmr [8] spectra, while the -210 °C trap contained 1.0 mmol of NF₃. The nonvolatile white solid residue in the ampoule consisted of 1.0 mmol of CsSbF₆ that was identified by its Raman spectrum [9]. capitalize NMR When in the above reaction the CH₃CN solvent was replaced by SO_2 and the reaction was carried out at the melting point of SO_2 (~ -70 °C), again quantitative $FONO_2$ and NF_3 evolution was observed. However the separation of the $FONO_2$ from the SO_2 solvent was more difficult due to their more similar volatilities. #### 3. Results and discussion The reaction of NF₄SbF₆ and CsNO₃ in a solvent that is compatible with NO₃ offers a new synthesis for FONO₂ with essentially quantitative yields. $$NF_4^+SbF_6^- + Cs^+NO_3^- \xrightarrow{SO_2 \text{ or } CH_3CN} FONO_2 + NF_3 + MSbF_{6_*}$$ The potential $NF_4^+NO_3^-$ intermediate, expected for a metathetical reaction [2,3], could not be isolated. It appears that the fluorination of the NO_3^- anion proceeds already at low temperatures in solution, thus interfering with the isolation of solid $NF_4^+NO_3^-$. If NF₄SbF₆ is available, the new synthesis offers a convenient method for the preparation of FONO₂ that does not require the handling of elemental fluorine. In this study, three solvents, i. e., CH₃CN, SO₂, and SO₂ClF, were investigated. Whereas CH₃CN offers the advantage of easier product separation, the use of SO₂ might be preferable from a safety point of view for larger scale reactions, avoiding the combination of a powerful oxidizer with an organic material. In SO₂ClF, no reaction was observed at temperatures up to 10 °C, due to the low solubility of the starting materials in this solvent. Attempts to prepare the yet unknown FONO molecule by the analogous reaction of NF₄SbF₆ with KNO₂ in SO₂ or CH₃CN solution were unsuccessful. In SO₂, no apparent reaction took place even at -10 °C, probably due to the low solubility of KNO₂. However in CH₃CN, strong gas evolution was observed upon its melting at \sim -40 °C. The volatile products consisted of NF₃ and variable amounts of different nitrogen oxides and some FNO and FONO₂. ## Acknowledgements The work at USC was financially supported by the National Science Foundation, and that at the Air Force Research Laboratory by the Air Force Office of Scientific Research and the Defense Research Project Agency. One of us (B.H.) thanks the Deutsche Forschungsgemeinschaft for a stipend. ## References - [†] Dedicated to the memory of Dr. Karel Lutar, a dear friend and outstanding chemist. - * Corresponding author. *E-mail address:* karl.christe@ple.af.mil (K.O.Christe) - ¹ Current address: Institute of Inorganic Chemistry, University of Cologne, Germany. - [1] Gmelin Handbook of Inorganic Chemistry, Fluorine; Springer Verlag, Berlin, 1986, Suppl. Vol. 4, pg. 204. - [2] K. O. Christe, W. W. Wilson, R. D. Wilson, Inorg. Chem. 19 (1980) 1494. - [3] K. O. Christe, R. D. Wilson, C. J. Schack, Inorg. Chem. 19 (1980) 3046. - [4] K. O. Christe, W. W. Wilson, C. J. Schack, R. D. Wilson, *Inorg. Synth.* 24 (1986) 39. - [5] K. O. Christe, C. J. Schack, R. D. Wilson, J. Fluorine Chem. 8 (1976) 541. - [6] R. H. Miller, D. L. Bernitt, I. C. Hisatsune, Spectrochim. Acta, Part A 23 (1967) 223. - [7] K. O. Christe, C. J. Schack, R. D. Wilson, Inorg. Chem. 13 (1974) 2811. - [8] E. Ghibaudi, A. J. Colussi, K. O. Christe, Inorg. Chem. 24 (1985) 2689. - [9] G. M. Begun, A. C. Rutenberg, Inorg. Chem. 6 (1967) 2212.